Review: Limit Properties - 10/10/16

1 Limit Definition

Definition 1.0.1 We have that $\lim _{x \rightarrow a} f(x)=L$ if for every $\varepsilon>0$, there exists a $\delta>0$ such that $|f(x)-L|<\varepsilon$ whenever $|x-a|<\delta$.

This means that if we make an ε window around our limit L, then we can find a matching δ window around a so that if we pick an x in the δ window, then $f(x)$ will be in the ε window.

Below is a picture showing the problems if the limit doesn't exist.

2 Properties of Limits

Let's look at some properties of limits. Luckily, limits behave as you might hope that they would! For the following, let c be a constant, and let $\lim _{x \rightarrow a} f(x)$ and $\lim _{x \rightarrow a} g(x)$ both exist.

1. $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
2. $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
3. $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
4. $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$

Example 2.0.2 What is $\lim _{x \rightarrow 2}[3 f(x)+g(x)]$? We can rewrite as $\lim _{x \rightarrow 2} 3 f(x)+\lim _{x \rightarrow 2} g(x)=$ $3 \lim _{x \rightarrow 2} f(x)+\lim _{x \rightarrow 2} g(x)=3(2)+0=6$.

3 More Properties

Let n be a positive integer.
6. $\lim _{x \rightarrow a}[f(x)]^{n}=\left(\lim _{x \rightarrow a} f(x)\right)^{n}$
7. $\lim _{x \rightarrow a} c=c$
8. $\lim _{x \rightarrow a} x=a$
9. $\lim _{x \rightarrow a} x^{n}=a^{n}$
10. $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a} \quad$ (If n is even, then we require $a>0$)
11. $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)} \quad$ (If n is even, then we require $\lim _{x \rightarrow a} f(x)>0$)

Example 3.0.3 Find $\lim _{x \rightarrow 4} x^{2}+7 \sqrt{x}-5$. We start with applying addition and subtraction rules (and the constant multiple one) to get $\lim _{x \rightarrow 4} x^{2}+7 \lim _{x \rightarrow 4} \sqrt{x}-\lim _{x \rightarrow 4} 5$. Then we can apply rules 7, 9, and 10 to plug in the value for x, getting $4^{2}+7(\sqrt{4})-5=16+14-5=25$.

Example 3.0.4 Find $\lim _{x \rightarrow 3} \sqrt[3]{x^{2}-10}$. First we use rule 11 to get $\sqrt[3]{\lim _{x \rightarrow 3} x^{2}-10}$, then the subtraction rule to get $\sqrt[3]{\lim _{x \rightarrow 3} x^{2}-\lim _{x \rightarrow 3} 10}=\sqrt[3]{9-10}=\sqrt[3]{-1}=-1$.

Example 3.0.5 Find $\lim _{x \rightarrow 3} \sqrt{x^{2}-10}$. We follow the same process to get $\sqrt{-1}$. But that isn't a real number, so the limit does not exist.

Practice Problems

1. Evaluate $\lim _{x \rightarrow 7} \sqrt{x^{2}-4 x+7}$.
2. Evaluate $\lim _{x \rightarrow-3} \sqrt[4]{x^{3}+5}$.
3. Evaluate $\lim _{x \rightarrow 2} \frac{x^{3}-7 x}{x+4}$.
4. Evaluate $\lim _{x \rightarrow 0} \frac{x-2}{\sqrt{x}+4}$.
5. Evaluate $\lim _{x \rightarrow-1} \sqrt{\frac{x}{x-4}}$.

Solutions

1. $\sqrt{28}$
2. Limit does not exist.
3. -1
4. $\frac{-1}{2}$
5. $\sqrt{\frac{1}{5}}$
